Demonstrating understanding of searching and sorting algorithms
By Jack Ifield
Task One: Real World Scenarios
What is an algorithm?
An algorithm is a series of steps put in place to achieve a particular goal. This can include things like searching and sorting, running code for a game, and even non-computer related things like following a recipe to make food.
What sort of real world problems can be solved by using good searching and sorting algorithms?
Searching and Sorting algorithms are used every day to help people solve problems much more efficiently. Some examples of this are searching through the supermarket directory to find a certain product, sorting products by price (on websites like amazon), and even something as ‘simple’ as a google search. Google searches are especially good because their algorithms work so efficiently as they can search through billions of websites in a matter of seconds. The books in a library are sorted, this is because it makes it much easier to find the book you are looking for, rather than if all the books were randomly scattered around, then it would be near impossible to find any book you want to find. The bigger the library, the harder it is to find your book, especially if they’re randomly scattered around.
Why is it important to choose good algorithms for these situations?
It is important to choose good algorithms for these situations because the user will be wanting accurate results as quick as they can get, there is no point in an algorithm that either delivers the wrong results, or never finishes. A good algorithm would be much better because a good algorithm delivers accurate results efficiently. What if a search engine like google had an inefficient algorithm, it could take months, even years looking through billions of websites just to find your google image search for ‘cats’. It is crucial to have a good algorithm, or you could never see the result you are wanting to receive. Or looking for a book in a library, if you are looking for a book by John Smith, it is much easier to start looking in the S section than starting a linear search from A – Z. Even in the S section it is easier to start looking from Sm, than it is easier looking from Sa. Although, depending on the size of the library this may be useful or not.
Discuss possible implications of using incorrect or inefficient algorithms for such real world situations.
Efficiency in algorithms is very important because the user will be wanting their results as quickly as possible. If an algorithm is inefficient and delivers its results slowly, the user may get bored and leave the algorithm before it has time to finish. An algorithm is no good if it takes years to complete. If a google search was an inefficient algorithm like a linear search, it could take hundreds of years to find your intended search, compare that to you getting bored after one minute of waiting. Making sure data is stored in an order is important because it could take algorithms even longer to process your results, imagine a website like amazon if wasn’t sorted. Millions of products would be scattered around random places around the website and it would be virtually impossible to find anything you wanted to buy, and you would give up searching very quickly. Correct and efficient algorithms are very important to have because they ensure you will be getting accurate information as fast as you can, which is what you want in an algorithm. If the books in a library aren’t sorted it may be near impossible to find the book you want (especially if it’s a big library) and you may give up very early in your search.
Task Two: Searching Algorithms
Describe how to carry out a searching algorithm of your choice
Chosen algorithm: Binary Search
A binary search is a search where you start looking in the middle of the items (if there is an even number of items, choose the lower number (the number on the left), if the item is greater than the selected item, the search will move to the middle of the numbers on the right (where the greater items are), if the item is lower than the selected item, the search will move to the middle of the numbers on the left (where the lower numbers are), this search will continue until the item has been found. This search only works if the items are sorted in order.
Show evidence of you demonstrating this algorithm
[image:]
All my numbers together, I will be looking for 529
[image:]
My first number, selected from the middle, (there was two numbers, and this was the lower number, so it was selected), 529 is a higher number than 82, so I’ll move to the right where the numbers are higher.
[image:]
From the numbers on the right, selected from the middle, (there was two numbers, and this was the lower number, so it was selected), 529 is a higher number than 255, so I’ll move to the right where the numbers are higher.
[image:]
From the numbers on the right, selected from the middle, (there was two numbers, and this was the lower number, so it was selected), this number is 529, the search is complete.
Describe the cost of this algorithm and how you got to this cost
The cost of this algorithm was 3, the cost was 3 because it took 3 comparisons to get to the result of 529, compared to a linear search which would have to make 7 comparisons to get to 529, by checking them in order, this algorithm was very efficient.
Using repeated experiments, determine the best, worst, and average cost for this algorithm on a fixed size of data
[bookmark: _Hlk510701888]Number of items in each search: 20
	
	Number Searching For
	Item Position
	Number of Comparisons

	1
	138
	3
	5

	2
	99
	2
	4

	3
	695
	15
	4

	4
	214
	1
	3

	5
	578
	8
	5

	6
	915
	15
	4

	7
	857
	13
	5

	8
	147
	3
	5

	9
	991
	18
	4

	10
	894
	15
	4

	Best
	N/A
	N/A
	3

	Worst
	N/A
	N/A
	5

	Average
	N/A
	N/A
	4.3

Describe how the cost will change as dataset increases
As the dataset increases the cost will also increase, this is because the algorithm will have more items to search through so, on average, the cost will be higher. This is proven in my graph where I measured the average cost of searching for an item in a binary search, using a range of datasets from 10 -100. I found in this experiment that as the dataset increases, so will the cost. Although the cost in my binary search increases, it now way increases as drastically as the cost of a linear search. A graph comparing them is shown below.
[image:]

[image:]

Task Three: Sorting Algorithms
Describe how to carry out a sorting algorithm of your choice:
Chosen algorithm: Quick Sort
A quick sort is when a the end number of your list of numbers is selected as a ‘pivot point’, this pivot point is used to compare the rest of the numbers to in the line, it starts by comparing the pivot point to the number on the left of it, if this number is larger, it is moved to the right, if this number is smaller, it is moved to the end on the left. This process is continued until each number has been checked. Your pivot point is now in the correct place. Now another pivot point is chosen. This process is repeated until all of the numbers are sorted in order.

[image:]
Describe the cost of the algorithm and how you arrived at this cost
The cost of this algorithm was 20, I know this because it took 20 comparisons to sort my random numbers into numerical order. I think tis algorithm sorted these numbers very efficiently because other algorithms can have a much higher cost than this one.
Describe the best case, worst case, average scenarios for quicksort
The best case scenario for quicksort is if all of the items are already sorted and it doesn’t need to move any of the items, the worst case for quicksort is if all of the items are needed to move multiple times. The average is in the middle of these instances. With 10 items the best case scenario could be 10 comparisons, whereas the worst case could be around 100 comparisons, the average case would be in the middle of those.
Task Four: Costs
Compare the cost of two algorithms and which is better for a larger dataset
For this comparison, I chose a binary search and a linear search. When I compared the cost of them, I found that the cost of the linear search was drastically higher than the cost of the binary search, this is shown in the graph at the end of task two. As you can see the linear search ends up costing much more than the binary search. If I were to use one of these algorithms to search in 1,000,000 items, I would use the binary search because it is much more efficient due to the low cost.
Explain what happens when the dataset increases
When the dataset increases the gap between the costs of the binary search and the linear search drastically widens. This shows us that the higher the cost the more it would cost (especially the linear search). In the graph the linear searches line gets continues to go upwards at a steep angle, whereas the binary searches line is almost flat.
Explain the implications of using this in a real world situation and why
In the real world when searching for something like a book in the library, it would be much easier to use a binary search to find the book you would like than it would be to use a linear search to find the same book. An example of this is if you wanted to find a book by J. Smith. Rather than starting at the beginning all the way from A – Z (A – Smith), you would divide and conquer the books by continually halving the books you need to look through, in this situation the binary search would be much more efficient but it is also the more efficient algorithm in other situations such as looking through the directory at a shop. It would be much easier to find the product you are looking for by using a binary search, rather than a linear search. An example of this is if you were looking for a violin in a music warehouse, rather than starting searching through their directory from the beginning and going the whole way through from A – Z (A – Violin) you could divide and conquer your way through the product directory and continually halve the amount of products you need to find to get to violin. A binary search is the much more efficient algorithm in most cases, especially when the dataset is largest. If I were to choose a way to search through a large dataset, I would always chose a binary search over a linear search.
Task Five: Final Evaluation
Why do computer scientists spend so much time working on developing better algorithms to do the same task?
I think computer scientists spend so much time developing better algorithms so the user can find the item they are searching for more efficiently, and the quicker the results come to the user, the happier they will be due to humans being impatient. And in the end, the computer scientists are doing this to get paid, and the more efficient their algorithm, the more they get paid. In the end the algorithms are there to please the human using them, and with a more efficient the algorithm the better it is, because humans want accurate information quickly, and in the end that’s all algorithms are for.

[bookmark: _GoBack]Explain the relationship between searching and sorting algorithms
Searching and sorting algorithms are related in many different ways such as they are both algorithms that take in information and send out information. Another way they are related is the best algorithms work at as low cost as possible, this means that the best algorithm out of both searching, and sorting algorithms take as little time as possible. Another way that searching and sorting algorithm algorithms are related is that they are best when they produce accurate information. This means that if a fast algorithm produces the wrong information, it doesn’t matter because the information is wrong. A reliable algorithm (searching or sorting) is much better than a quick algorithm that produces the wrong results.
When are your searching algorithms useful in the real world?
In the real world, the binary search is usually the most useful when searching for anything. A few examples of when a binary search is useful is when you are searching through a shop’s directory for a particular item or searching through a library for the book you want, or searching through the school’s roll for a particular person. Although the binary search is usually most useful, sometimes the linear search is useful like when searching through a small amount of items, or looking for something near the beginning of a list, and the linear search can be more reliable because it checks through everything, so if the items are not sorted, the linear search will still be able to find it just as quickly as it would have if the items were not sorted. This is one of the binary search’s weaknesses as it cannot find anything if it is not sorted. So if you are searching through a list of items on a website where everything is sorted randomly, the linear search is the search you should use.
What is something you learned in this investigation that surprised you?
Something in this investigation that surprised me is how large the gap between the cost of the binary search and linear search was. I knew there would be a gap, but I didn’t think the gap would be that large and this surprised me quite a bit.
image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.jpeg

image18.jpeg

image19.jpeg

image20.jpeg

image21.jpeg

image22.jpeg

image23.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.jpeg

image31.jpeg

image32.jpeg

image33.jpeg

image34.jpeg

image35.jpeg

image36.jpeg

image1.jpeg

image37.jpeg

image38.jpeg

image39.jpeg

image40.jpeg

image41.jpeg

image42.jpeg

image43.jpeg

image44.jpeg

image45.jpeg

image46.jpeg

image2.jpeg

image47.jpeg

image3.jpeg

image4.jpeg

image5.png

image6.png

